Isochronal Annealing of Radiation Damage in α - and δ -Pu Alloys

U.S. Russia Conference on Advances in Materials Science

1 September 2009

Scott McCall M.J. Fluss, B.W. Chung, R.G. Haire²

Physical and Life Sciences Directorate Lawrence Livermore National Laboratory

²Oak Ridge National Laboratory

Pure Plutonium has in many phases

There are multiple stabilizers for δ -Pu, most of which contract the lattice and work over only a limited concentration range

PuAm alloys are stable over wide range of concentrations and the lattice parameter expands with [Am].

CMELS-07-0XX.3

Self Damage in Plutonium occurs via α -decay

Self Damage in Plutonium occurs via α -decay

Simulation of an 85 KeV collision cascade in δ -Pu at 600K

Kubota et al J Comp-Aided Mater Des 14 367(2007)

More detailed calculations find a larger cascade size

Magnetic susceptibility of Pu increases with damage accumulation

McCall et al Proc Nat Acad Sci 103 p17179 (2006)

$$\chi(t,T) = \chi_i(T) + \chi_{Bubble}(T)(1 - e^{-t/\tau}) + \chi'_D(T) \cdot t$$

Initial Undamaged State

Saturation Term

Additional Disorder Term

T is material, not T dependant

What does the time dependence reveal about radiation damage?

$$\chi(t,T) = \chi_i(T) + \chi_{Bubble}(T)(1-e^{-t/\tau}) + \chi_D(T) t$$

What does the time dependence reveal about radiation damage?

$$\chi(t,T) = \chi_i(T) + \chi_{Bubble}(T)(1-e^{-t/\tau}) + \chi_D(T) t$$

What does the time dependence reveal about radiation damage?

$$\chi(t,T) = \chi_i(T) + \chi_{Bubble}(T)(1-e^{-t/\tau}) + \chi_D(T) t$$

Model Frozen Cascade			
	Days	Volume Influenced	Atom Equiv.
$ au_lpha$	15.8	9,800 nm ³	500,000
_	11.5	13,600 nm ³	550,000

$$\frac{1}{\tau} = \frac{V_{\textit{Bubble}}}{V_{\textit{Sample}}} \, \lambda_{\textit{Pu}}$$

The Contribution from self damage is spatially extended

The effects on the lattice due to the damage cascade are larger than initially thought

Experimental Result

Theoretical Confirmation

Damage cascade frozen in at low temperature (< 30K)

McCall et al Proc Nat Acad Sci 103 p17179 (2006)

Simulation of an 85 KeV collision cascade in δ -Pu at 600K

Kubota et al J Comp-Aided Mater Des 14 367(2007)

Radiation damage in Pu is more complicated than a simple FCC estimate

Isochronal Annealing provides information about the temperature dependence of defects

Accumulate damage at low temperature observable by a physically measureable property. Often this is resistance, but may include other properties such as magnetization.

The Fraction of Signal Retained depends on the sensitivity of the measurement to a particular type of defect.

Most isochronal annealing studies involve irradiation with electrons or protons, not heavy ions

Damage cascades are be similar to those created by the α particle

Annealing Recovery Stages

- I. Interstitials Migrate, Vacancy-Interstitial Close Pair Recovery
- **II.** Release of Trapped Interstitials
- **III.** Vacancy Activation
- IV. Vacancy Clustering + Impurity Interactions
- V. Vacancy Cluster Dissolution

Electron irradiation of Pb Measured by resistivity

FIGURE 1 Schematic view of the recovery of lead after electron irradiation, indicating the main stages I to V.

Schroeder and Shilling Rad Eff 30 (1976) 243

Isolated Frenkel pairs in FCC metals have clear annealing curves

Isochronal annealing curves on "pure" plutonium are not quite as clear

Fraction of the damage annealed Resistivity~50% at Stage I Magnetization~33% at Stage I

The higher temperature annealing stages are not as obvious as in the case of Pb

Resistivity data from Wigley, Proc R Soc A 284 (1964)344

The annealing stages of each occur at similar temperatures

Isochronal annealing using two different measurement techniques

Very different annealing curve provide insight into different aspects of the damage cascade

Isochronal annealing of Pu(3.3at%Ga) shows distinctive annealing stages like lead

Both are FCC metals

11 ABC DE 100 90 Pb 80 70 **60**: ap/ap 50 30 20 10 20 50 200 300 --- T (K)

Majority of radiation damage from U recoil

FIGURE 1 Schematic view of the recovery of lead after electron irradiation, indicating the main stages I to V.

Radiation damage from electron irradiation

Isochronal annealing of 3.8 MeV proton irradiation damage yields a different result at low temperatures

Irradiation should predominately generate Frenkel pairs

Annealing curve more closely resembles a dirty metal

The "vacancy based" stages are similar for both cases

Isochronal anneal temperature (K)

The difference in stage I behavior suggests self damage is not dominated by close pair recovery

Isochronal annealing of two resistivity specimens show similar overall results

The annealing soak times were longer for the 4.3at% data.

One would expect this to show a lower onset temperature

Annealing stages at higher temperature are more smeared out than in the 3.3at%Ga data

Stage I is "real" even though the specimen is highly impure

Isothermal annealing at "Stage I" provides an opportunity to understand the details of the annealing stage

Is Stage I controlled by a simple chemical rate equation?

 γ =2 is reasonable thereby suggesting bimolecular kinetics

Isochronal annealing with two separate techniques on δ -Pu(4.3at%Ga)

Bimolecular kinetics are NOT due to interstitial-vacancy close pair recombination

Isochronal magnetic annealing for different δ -Pu alloys

Recovery of magnetically observable radiation damage begins at a lower temperature in the expanded lattice

Isochronal annealing with two techniques on a PuAm alloy

The isochronal annealing curves suggest damage structures in PuAm are different from Pu stabilized with Ga

CMELS-07-0XX.22

Conclusions

The damage cascade due to an 85 KeV U recoil is ~30 nm in diameter

Experimental result:

Magnetization data – a bulk measurement

Theoretical MD simulation:

Detailed MEAM potential calculations

The initial annealing stage follows 2nd order chemical kinetics

Might suggest interstitial-vacancy close pair recovery

Not consistent with proton irradiation studies

Isochronal Magnetic annealing suggests vacancy annihilation

limited below Stage III

Interstitial clustering? Interstitial-impurity trapping?

